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ABSTRACT

Despite dramatic improvements over the last decades, operational NWP forecasts still occasionally suffer

from abrupt drops in their forecast skill. Such forecast skill ‘‘dropouts’’ may occur even in a perfect NWP

system because of the stochastic nature of NWP but can also result from flaws in the NWP system. Recent

studies have shown that dropouts occur due not to a model’s deficiencies but to misspecified initial conditions,

suggesting that they could bemitigated by improving the quality control (QC) system so that the observation-

minus-background (O-B) innovations that would degrade a forecast can be detected and rejected. The en-

semble forecast sensitivity to observations (EFSO) technique enables for the quantification of howmuch each

observation has improved or degraded the forecast. A recent study has shown that 24-h EFSO can detect

detrimental O-B innovations that caused regional forecast skill dropouts and that the forecast can be im-

proved by not assimilating them. Inspired by that success, a new QC method is proposed, termed proactive

QC (PQC), that detects detrimental innovations 6 h after the analysis using EFSO and then repeats the

analysis and forecast without using them. PQC is implemented and tested on a lower-resolution version of

NCEP’s operational global NWP system. It is shown that EFSO is insensitive to the choice of verification and

lead time (24 or 6 h) and that PQC likely improves the analysis, as attested to by forecast improvements of up

to 5 days and beyond. Strategies for reducing the computational costs and further optimizing the observation

rejection criteria are also discussed.

1. Introduction

Numerical weather prediction (NWP) has gone

through dramatic improvement over the last several

decades (e.g., Simmons 2011). Despite the very high

average forecast skill, however, current operational

NWP systems still suffer from abrupt drops in forecast

performance (e.g., Alpert et al. 2009; Kumar et al. 2009;

Rodwell et al. 2013). Such forecast skill dropouts, or

busts, are highly undesirable because they not only de-

grade the average forecast skills but also taint the op-

erational reliability of the NWP forecasts.

There are two contrasting views on why forecast

dropouts occur. One, purely probabilistic interpretation

views a deterministic analysis as just a single stochastic

draw from the hypothetical population whose probability

distribution function obeys that of a minimum-variance

or maximum-likelihood estimator conditioned by the

particular realizations of the first guess and observations

given at the initial time; from this perspective, dropoutsCorresponding author: Daisuke Hotta, dhotta@mri-jma.go.jp
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may occur, even with an optimal data assimilation (DA)

system and flawless observations, if the analysis in-

crement happens to project strongly on rapidly growing

modes of the analysis errors in such a way as to amplify

them [Lorenc and Marriott (2014, section 5); see also

the discussion in the appendix below]. Another in-

terpretation acknowledges the imperfection of the oper-

ational systemand tries to attribute dropouts to particular

flaws in the system. In this line, recent studies by the

National Centers for Environmental Prediction (NCEP)

‘‘Dropout Team’’ (Alpert et al. 2009; Kumar et al. 2009)

have shown that many dropouts tend to occur due not to

model deficiencies but to the misspecification of the ini-

tial conditions and they argued that one promising way to

alleviate the dropout problem is to improve the opera-

tional quality control (QC) system. We believe that the

two aspects are both important in understanding drop-

outs. In interpreting the results shown later in this paper,

we will pay attention to both possibilities.

Advances in QC methods have improved the accuracy

of NWP (e.g., Kalnay 2003, section 5.8) but current op-

erational QC methods still have room for improvement.

The biggest limitation is that the current operational

approach, which first screens out the observations whose

observation-minus-background (O-B) innovations ex-

ceed predetermined thresholds (‘‘gross-error check’’)

and then assigns smaller weights to the observations that

are inconsistent with the (tentative) analysis (‘‘nonlinear

QC’’; see the last paragraph of section 2a), canmistakenly

screen out accurate observations and allow inaccurate

observations to be used in ‘‘latent dropout’’ situations,

where the background is unreliable and the other ob-

servations in the vicinity are either inaccurate or not

available. Flow-dependent techniques such as dynamic

QC, which is discussed byOnogi (1998), which allows the

thresholds to vary depending on the estimated back-

ground accuracy, can alleviate this issue but only par-

tially. A fully flow-dependent QC method that filters out

only the observations that significantly degrade forecasts

is thus needed, but such a method requires knowing

in advance whether an observation will improve or

degrade a forecast.

Langland and Baker (2004, hereafter LB04) made a

breakthrough in this direction by introducing a diagnostic

method, called forecast sensitivity to observations (FSO),

which enables to estimate, at a computationally feasible

cost, how much each observation improved or degraded

the 24-h forecast. Their formulation exploits an adjoint

sensitivity technique and is applicable to variational DA

systems. Major operational NWP centers soon adopted

this technique (e.g., Cardinali 2009; Gelaro and Zhu 2009;

Ishibashi 2010; Lorenc and Marriott 2014) and showed

that it is a powerful diagnostic. Its ensemble-based

formulation, ensemble FSO (EFSO), was devised by Liu

and Kalnay (2008) and Li et al. (2010) for the local en-

semble transform Kalman filter (LETKF; Hunt et al.

2007); Kalnay et al. (2012) derived a simpler and more

accurate new EFSO formulation applicable not only

to LETKF but to any ensemble Kalman filter (EnKF).

Ota et al. (2013, hereafter ODKM13) successfully

implemented the newEFSOonNCEP’s quasi-operational

global EnKF system and showed that EFSO is consis-

tent with previous adjoint-based FSO studies. Fur-

thermore, they applied EFSO to individual cases and

succeeded in attributing regional forecast dropouts to

specific O-B innovations. Strikingly, in one of their ret-

rospective data-denial experiments based on 24-h EFSO,

the regional 24-h forecast error was reduced by as much

as 30% by not assimilating the observations that showed

large negative EFSO impacts.

We emphasize here that we should not interpret a large

negative (E)FSO impact from an observation as a direct

indication of any flaws in that observation. Unlike what

its name may suggest, (E)FSO estimates the impact on a

forecast from the O-B innovation (dyob0 ) associated with

each observation rather than the observation itself; det-

rimental impacts can thus arise from both an erroneous

background and erroneous observations. Moreover, be-

cause of the stochastic nature of DA, even a perfectly

benign observation and background within a perfect DA

system could show detrimental impact, and the impact

can be large regardless of the actual errors of the obser-

vation or background if the observation is made in a re-

gion with high sensitivity. Furthermore, detrimental

impact can be caused by many reasons1 other than issues

in the observations themselves. In this manuscript, we

refer to the observations that, if assimilated, would result

in significant forecast degradation by the expression ‘‘

(observations associated with) detrimental dyob0 in-

novations’’ to avoid giving a negative connotation to such

observations themselves.

Following the success of ODKM13, in this study we

propose a simple, new QC scheme which we denote

‘‘proactive QC’’ (PQC), which exploits EFSO’s capacity

to identify detrimental dyob0 innovations that actually

1 These include (i) large measurement errors of the instru-

ment; (ii) imperfection in the retrieval algorithm; (iii) errors of

the observation operator, including representativeness errors;

(iv) forecast model errors; (v) suboptimal preprocessing, including

thinning, bias correction, and gross-error check; and (vi) incorrect

specification of the observation error covariance. Note that detri-

mental impacts may not be necessarily due to problems in the

background or the observations (like in the first and second entries

in the list above) but rather to problems in the DA system (like in

the third through sixth issues).
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degrade the forecast skill. We first perform DA using

all the available observations that passed the standard

QC and 6 h later we compute regional 6-h forecast

errors (with respect to the analysis) and apply an al-

gorithm to detect regional skill dropouts. We next

conduct EFSO diagnostics on the detected regions to

identify potential detrimental dyob0 innovations that are

likely responsible for the regional dropouts. Finally,

we repeat the analysis and 6-h forecast without assim-

ilating the identified detrimental dyob0 innovations to

provide a better first guess to the analysis at the

next cycle.

To implement this PQC scheme in an operational

system, we need to address several important questions:

1) Does EFSO work for an ensemble–variational hy-

brid DA system? Hybrid approaches have been

adopted by several operational NWP centers

(Buehner 2005; Kleist 2012; Wang et al. 2013; Kleist

and Ide 2015a; Clayton et al. 2013) but EFSO has not

yet been tested on such a system.

2) Is a short lead time of 6 h long enough to capture

meaningful signals from detrimental dyob0 innova-

tions, since analysis errors may not be negligible

compared with 6-h forecast errors?

3) How do we choose the observations to reject given

the EFSO impacts of individual observations?

4) Does rejection of the observations identified by

EFSO as detrimental improve the analysis and the

first guess in the next cycle?

This paper aims to show that PQC does improve the

analysis in an operational system, providing answers to

questions 1–4 by conducting experiments using a lower-

resolution version of the NCEP’s operational global

NWP system. Section 2 reviews the EFSO algorithm

following Kalnay et al. (2012) and describes the proposed

algorithm of PQC. Section 3 describes the experimental

settings. Section 4 shows the EFSO’s dependence on

verifying truth and evaluation lead time, providing an-

swers to questions 1 and 2 above. Section 5 describes the

data-denial experiments and addresses questions 3 and 4.

Section 6 gives a summary and offers our conclusions,

including several ideas on how to further reduce com-

putational costs in an operational implementation.

2. EFSO formulation and PQC algorithm

a. EFSO formulation following Kalnay et al. (2012)

Denoting the gain matrix by K, the analysis equation

can be written as

xa
0 2 xb

0 5Kdyob0 , (1)

where xa0 and xb0 are the ensemble mean analysis and

background, respectively, and dyob0 5 yo0 2H(xb0) is the

O-B innovation of the ensemble mean, with H(�) de-

noting the observation operator, all valid at time t 5 0.

Unlike variational methods, EnKF allows us to directly

estimate the gain matrix K by

K5AHTR21 ’
1

K2 1
(XaXaT)HTR21 ’

1

K2 1
XaYaTR21 ,

(2)

where K is the ensemble size; A and R are the analysis

and observation error covariance matrices, respectively;

H is the Jacobian of H; Xa is the matrix of the analysis

perturbations valid at time 0; and Ya 5 HXa. Using (2),

the analysis equation (1) yields

xa
0 2 xb

0 ’
1

K2 1
XaYaTR21dyob0 . (3)

Now, following LB04, we measure the change of the

forecast error due to the assimilation by

De2 5 eTtj0Cetj0 2 eTtj26Cetj26

5 (e
tj0 2 e

tj26
)TC(e

tj0 1 e
tj26

) , (4)

with

e
tj0 5 x

tj0 2 xyt , and e
tj26

5 x
tj26

2 xyt , (5)

where xtj26 and xtj0 denote the ensemble mean forecast

valid at time t initialized, respectively, at time26 and0 (i.e.,

before and after the assimilation), xyt denotes the verifying

state at time t, and C is a square matrix that defines the

error norm (section 3). Denoting the forecast operator that

advances the model state from t1 to t2 by Mt2jt1(�) and its

Jacobian by Mt2jt1, and using (3), we have

De2 5 (x
tj0 2 x

tj26
)TC(e

tj0 1 e
tj26

)’ [M
tj0(x

a
0 2 xb

0 )]
TC(e

tj0 1 e
tj-6)

’
1

K2 1
(M

tj0X
aYaTR21dyob0 )TC(e

tj0 1 e
tj26

)’ dyob
T

0

1

K2 1
R21YaXf T

tj0C(etj0 1 e
tj26

) , (6)

where Xf

tj0 is the matrix of forecast perturbations ini-

tialized at time 0 and valid at time t. Equation (6) can be

interpreted as an inner product of the O-B innovation

vector dyob0 and a sensitivity vector:
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De2 ’ dyobT

0

›(De2)

›y
, (7)

where

›(De2)

›y
5

1

K2 1
R21YaXf T

tj0C(etj0 1 e
tj26

) . (8)

Thus, the change in the forecast error due to the assimila-

tion of observations yo0 can be decomposed into a sum of

contributions from the O-B innovations associated with

each observation. The contribution from a single observa-

tion yo0,l, the lth element of yo0 , or more precisely, the con-

tribution from its corresponding O-B innovation dyob0,l, is

(De2)j
yo
0,l
’ dyob0,l

›(De2)

›y
l

. (9)

This is the EFSO impact that we wish to employ.

As with any EnKF, localization needs to be applied

to the error covariances to suppress sampling errors

whenever K is smaller than the number of degrees of

freedom of the predicted dynamical system. After ap-

plying localization, the sensitivity vector becomes

›(De2)

›y
5

1

K2 1
R21[r+(YaXf T

tj0 )]C(etj0 1 e
tj26

) , (10)

where the symbol 8 represents element-wise multipli-

cation (Schur product) and r is a matrix whose (l, j) el-

ement is a localization factor of the lth observation onto

the jth grid point.

Unlike in 4DVar, in EnKF, an explicit estimation of the

analysis error covariance and the gain matrix are avail-

able. As pointed out by ODKM13, we can exploit this to

approximately estimate how the analysis and forecast

would change by not assimilating a given subset of the

observations. Let dyob,deny0 be a column vector whose ele-

ments corresponding to the denied observations are

identical to those of dyob0 but others are all set to zero.

Then, assuming that the Kalman gain K does not change

much by excluding the denied observations (which should

be valid if the fraction of denied observations is small; see

section 6 for a discussion), the analysis that would be ob-

tained by not assimilating them can be approximated by

xa,deny
0 ’ xb0 1K(dyob

0 2 dyob,deny
0 )5 xa

0 2Kdyob,deny
0 . (11)

Substituting (2) and applying localization as in (10), we

obtain

xa,deny0 2 xa0 ’2
1

K2 1
[r+XaYaT]R21dyob,deny

0 . (12)

Similarly, the change in forecast can be approximated by

xf ,deny
tj0 2 xf

tj0 ’2
1

K2 1
[r+Xf

tj0Y
aT]R21dyob,deny0 . (13)

Several NWP systems useQC to ensure consistency of

an observation with respect to the analysis or the other

observations assimilated in the same cycle (Lorenc 1981;

Ingleby and Lorenc 1993; Anderson and Järvinen 1999;

Tavolato and Isaksen 2015). Such a QC method, known

as nonlinear QC or variational QC (Anderson and

Järvinen 1999), is implemented in the variational part of

NCEP’s global DA system and the resulting flags are

used in the EnKF part. We note here that 0-h EFSO (or

analysis sensitivity to observations) can also be used to

retrospectively check whether the inconsistent obser-

vations were effectively rejected. Verifying against the

analysis, (4) yields

De2 52(Kdyob0 )TCdxa,b, (14)

from which we can deduce that the contribution to De2

from a single observation is negative (positive) if the

partial analysis increment attributable to that observation

is consistent (inconsistent) with the total analysis in-

crement. Thus, we expect that 0-h EFSO should be mostly

negative (or should at least not show a large positive value)

provided that the nonlinear QC works well. Liu et al.

(2009) proposed a similar idea based on self-sensitivity

diagnostics; in fact, their Eq. (13), which ‘‘predicts’’ what

the analysis should be if a particular observation was not

assimilated, can be obtained by applying the observation

operator to our equation (12).We show an example of this

diagnostics in section 4b, where we discuss EFSO’s de-

pendence on evaluation lead time.

b. PQC algorithm

PQC is based on the following idea: if the assimilation

of some dyob0 innovations significantly degrades the

forecast, such innovations should be identifiable by

EFSO; we can then improve the analysis and forecast by

not assimilating them. Let 0 h be the initial time for

which PQC is to be applied and assume that the DA

system has a 6-h assimilation window. The algorithm can

be summarized as follows:

1) run the regular DA cycle from time 26 to 0 h and

then from 0 to 16 h;

2) using the information available from step 1, detect

horizontal regions where ‘‘forecast skill dropout’’ is

likely to occur, using the empirical regional dropout

detection criteria (section 2c);

3) if such regions are detected, perform 6-h EFSO

targeting each of those regions;

4) then, apply detrimental innovation selection criteria

(section 5b) to identify the observations whose dyob0
innovations are likely detrimental; and
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5) if such detrimental dyob0 innovations are identified,

repeatDA for time 0hwithout using them [or use the

computationally faster approximation (12)].

c. Regional dropout detection criteria

Within an operational context it would be computa-

tionally unfeasible to perform EFSO targeted at every

region of the globe. We thus need to detect potential

regional forecast dropouts without actually performing

EFSO. We follow ODKM13’s procedure to detect po-

tential regional dropouts:

d divide the globe into 308 3 308 latitude–longitude

rectangular cells allowing for overlaps by shifting the

longitude by 108 and the latitude by 158;
d for each of the cells, compute regional forecast errors

for 6- and 12-h forecasts valid at the same time

(eTtj0Cetj0ee
f

tj0 and eTtj26Cetj26ee
f

tj26
, where t 5 6 h);

d find cells where both e
f

tj0/he f

tj0i (where the bracket h�i
represents the mean over the period of experimen-

tation) and e
f

tj0/e
f

tj26
are more than twice their

standard deviations, where the standard deviation

is evaluated over the period of experimentation;

and
d if two or more overlapping or adjacent cells satisfy the

abovecriteria,merge themto formasingledropout region.

Using this procedure, we were able to narrow down

the regions needed to compute EFSO to only one or two

regions per cycle while identifying more than 200 cases

of potential regional dropouts.

3. Experimental setup

This section describes the setup of our experimenta-

tion. Since our experiments are an extension of

ODKM13, we compare our setup with theirs in Table 1.

a. Forecast model and DA system

The forecast model we used is the NCEP GFS model

that had been operational until January 2015. Because of

limited computational resources, however, we use it with

the reduced horizontal resolutions of T254 (;55km) and

T126 (;110km), respectively, for deterministic and en-

semble runs (as opposed to the operational T574 and T254

resolutions). As in the operational system, the analysis is

produced by the two-way nested EnKF–3DVar hybrid

Gridpoint Statistical Interpolation analysis system (GSI)

(Wang et al. 2013; Kleist 2012; Kleist and Ide 2015a,b). For

the ensemble generation, we adopt the LETKF instead of

the operational serial ensemble square root filter (EnSRF)

ofWhitaker andHamill (2002).Weuse an ensemble size of

80 and apply both localization and inflation to the co-

variance. The parameters for localization and inflation are

identical to the operational serial EnSRF with T254L64

resolution: the covariance is localized using Gaspari and

Cohn’s (1999) function with a cutoff length of 2000km for

the horizontal and twice the scale height for the vertical

(equivalent to e-folding scales of 800km and 0.8 scale

heights). For inflation, we adopt both ‘‘relaxation to prior

spread’’ (RTPS) multiplicative inflation and a National

Meteorological Center (NMC, now known as NCEP)

method–like additive inflation, as described in Wang et al.

TABLE 1. Experimental settings of our PQC experiments compared with ODKM13.

This study ODKM13

Forecast

Forecast model GFS GFS

Resolution (deterministic) T254L64 N/A

Resolution (ensemble) T126L64 T254L64

Analysis

DA system GSI hybrid 3DVar with ensemble from LETKF Pure EnSRF

No. of members 80 80

Assimilated observations Same as the operational system Same as the operational system but without

precipitation retrieval from TRMM/TMI

Localization cutoff length 2000 km (horizontal) 2000 km (horizontal)

Twice the scale height (vertical) Twice the scale height (vertical)

EFSO

Verifying truth GSI analysis or EnSRF mean analysis

LETKF mean analysis

Evaluation lead time 6, 12, and 24 h 24 h

Localization cutoff length Same as LETKF Same as EnSRF

Error norm Dry and moist total energy Dry and moist total energy

Period

Spinup 7 days from 0000 UTC 1 Jan to 1800 UTC 7 Jan 7 days from 0000 UTC 1 Jan to 1800 UTC 7 Jan

Statistical verification 31 days from 0000 UTC 8 Jan to 1800 UTC 7 Feb 31 days from 0000 UTC 8 Jan to 1800 UTC 7 Feb

Case studies 34 days from 0000 UTC 8 Jan to 1800 UTC 10 Feb 31 days from 0000 UTC 8 Jan to 1800 UTC 7 Feb
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(2013), but with a relaxation parameter of 0.85 for RTPS

anda scalingparameter of 0.32 for theadditive inflation. Since

the parameters we use in T126 LETKF are optimized for use

with T254 serial EnSRF, these choices may not be optimal.

Nevertheless, the system worked without any problem.

b. Observations

In this study,we assimilate all the observations thatwere

assimilated in the operational system during the period of

our experimentation. Comprehensive documentation of

all the observation types assimilated in this study is avail-

able online (Keyser 2011, 2013). Conventional (i.e., non-

radiance) data are grouped by ‘‘report types’’ (see Table 2

in Keyser 2013); satellite radiances are grouped by the

sensors, as summarized in Table 1 in ODKM13.

c. EFSO configurations

We compute EFSO impacts for each assimilated ob-

servation using (9) and (10) for evaluation lead times of 0,

6, 12, and 24h. We localize the cross covariance using the

same localization function as in LETKF analysis and

adopt themoving localization scheme ofODKM13. Since

we are interested in EFSO over a shorter lead time (6h as

opposed to 24h), the impact of localization advection

should be much smaller.

It is a common practice in computing forecast error

vectors with (5) to use the DA system’s own analysis as

the verifying truth, xyt . An issue that arises when applying

EFSO to a hybrid DA is that two different analyses are

available, one from the variational part and the other

from EnKF. In section 4c, we explore which to choose

when performing EFSO. As the error metricC, we adopt

either the dry or moist total energy norm (Ehrendorfer

et al. 1999); see also Eq. (9) in ODKM13. We perform

DA cycles from 0000 UTC 1 January to 1800 UTC

10 February 2012 and discard the first 7 days to account

for spinup. For the first cycle, we create the first guess

by interpolating the operational (higher resolution) GSI

product to our resolution. Note that this relatively short

spinup period is sufficient in our case because the first

guess ingested during the first cycle is already close to

fully spun up.We perform statistical verifications for the

31-day period from 8 January to 8 February 2012, but for

case studies presented in section 5 we include the whole

34-day period (excluding the spinup).

4. Sensitivity of EFSO to the choice of evaluation
lead time and verifying truth

a. Consistency with previous FSO studies

Since this study is the first to applyEFSO to ahybridDA

system, it is important tomake sure of the validity ofEFSO

within a hybrid DA framework. We first compare our

EFSO results with those of ODKM13, whose experimen-

tal setup is similar to ours except for the resolution and for

the use of a pure (nonhybrid) EnSRF. We then compare

our results with an adjoint-based FSO, taking, as an ex-

ample, the recent work at NASA/GMAO (Holdaway

et al. 2014). As noted before, in the hybrid system we have

two different choices for the verifying truth. We will show

that the EFSO results do not depend significantly on this

choice; thus, in this section, we concentrate on the EFSO

impacts verified against the GSI analysis.

To compare with the results of ODKM13, we start with

Figs. 1c,f showing the 24-h EFSO impacts from each ob-

servation type measured, respectively, by the moist and

dry total energy norm (shorterEFSO results are discussed

in the next subsection). The impacts are evaluated for the

whole globe and are averaged over the 31-day verification

period defined in section 3. Note that observations with

positive impacts have negative EFSO values because they

decrease the forecast errors. By comparing these figures

with Figs. 2 and 3 in ODKM13, we find that, despite

several differences in the experimental setup including

their use of hybrid DA, our results are mostly consistent.

In particular, the following notable features pointed out

by ODKM13 are also valid with our results:

d TheAdvancedMicrowave SoundingUnit A (AMSU-A)

contributes most positively followed by aircraft, radio-

sondes and the Infrared Atmospheric Sounding

Interferometer (IASI).
d Ozone contributes slightly negatively.
d All satellite radiance observations [especially the

Microwave Humidity Sounder (MHS)] and piloted

balloon (PIBAL) exhibit smaller impacts with the dry

norm than with the moist norm.

Our results are also consistent with the adjoint-based

FSO computed by Holdaway et al. (2014) (see their

Figs. 6 and 9): despite differences in the verification

period, the sampling (6 h in ours and daily in theirs), and

the definition of the error norm, our results and those of

Holdaway et al. (2014) agree in that AMSU-A, aircraft,

and radiosondes are the top three positively contribut-

ing types, followed by IASI and AIRS, and that the

impacts from satellite radiances are ordered, from

largest to smallest, as AMSU-A, IASI, AIRS, HIRS,

and MHS. The consistency of our results with respect to

ODKM13 and Holdaway et al. (2014) strongly supports

the validity of using EFSO within a hybrid DA system.

b. Dependence on evaluation lead time

Our PQC algorithm relies on the ability of 6-h EFSO

to detect detrimental dyob0 innovations. Thus, it is of vital

importance to explore the characteristics of 6-h EFSO,
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in particular to what degree it is consistent with the

conventionally used 24-h FSO/EFSO.

Each panel in Fig. 1 shows the EFSO impacts from each

of the observation types averaged over the 31-day period

evaluated with 6- (left panels), 12- (middle panels), and

24-h (right panels) lead times. The top and bottom rows of

panels in Fig. 1 show the EFSO impacts measured, re-

spectively, with moist and dry total energy norms. Despite

the concern we raised in the introduction, Fig. 1 shows that

the EFSO impacts evaluated with different lead times are

in fact highly consistent. Two notable features are 1) the

estimated impacts decrease as the lead time increases

(except for AMSU-A and radiosondes from 6 to 12h),

when, in fact, the forecast error grows, and 2) the decrease

in the impacts with lead time is modest for satellite radi-

ances and surface observations (land surface, marine

surface, and ASCAT) but is large for other observation

types such as aircraft and MODIS winds. Both features

could be explained by the inability of the static covariance

localization to accurately account for time propagation

(Bishop andHodyss 2009a,b; Gasperoni andWang 2015):

as the lead time increases, the information from an obser-

vation is dispersed away from where it was observed, but

the localization applied inEFSO fails to accurately account

for this effect, resulting in diminished impact estimation.

This effect is stronger for longer lead times and in the upper

troposphere where the westerly jet prevails. This explains

why the impact from aircraft, for example, weakens more

quickly than does that from surface observations.

In assessing the accuracy of EFSO impact estimation,

it is useful to check the consistency between the actual

forecast error reduction [De2 as in (4)] and the sum of

FIG. 1. Comparison of EFSO impacts from each observation type evaluated for different lead times and error norms. (a) The 6-h EFSO

impacts measured with the moist total energy norm. (b),(c) As in (a), but for 12-h and 24-h lead times, respectively. (d),(e) As in (a),(b),

but measured with the dry total energy norm, respectively. (f) As in (c), but measured with the dry total energy norm. In all panels, the

EFSO impacts are verified against theGSI analysis and have units of J kg21. Themean actual forecast error reduction (meanDe2), the sum
of EFSO impacts over all observations (mean SEFSO), and the correlation coefficient of these two quantities (cor. coeff.) over the

verification period are also given in each panel.
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the EFSO impacts over all observations. The means

and the correlation coefficient of these two quantities

over the verification period are also given in each panel

in Fig. 1. The correlation coefficients are higher and the

means of the two quantities are also more consistent for

shorter lead times than for the longer ones, suggesting

that EFSO impact estimations are more accurate for

shorter lead times. This is consistent with our expecta-

tion that EFSO with shorter lead times suffer less from

the problem of localization advection.

The EFSO-estimated percentages of beneficial obser-

vations in our system for the lead times of 0, 6, 12, and 24h

are shown in Figs. 2a–d, respectively. Consistent with

previous studies (see the appendix), the percentage of

beneficial observations for 24-h forecasts (Fig. 2d) is only

slightly above 50% for all observation types (except

TCVital, whose statistics are not reliable as a result of the

limited sample size of only 77). Interestingly, however, at

shorter lead times, more observations are estimated to be

beneficial. The percentages of beneficial observations, all

types combined, are 56%, 53%, 52%, and 51%, re-

spectively, for 0, 6, 12, and 24h. In the appendix, we

discuss and interpret these results.

We have seen that, statistically, 6-h EFSO impacts are

mostly consistent with 24-h EFSO. We have found that

this consistency also holds even for individual observa-

tions: for instance, Fig. 3 shows the horizontal (upper

panels) and vertical (lower panels) distributions of the

EFSO impacts evaluated with lead times of 6 (left panels)

and 24 (middle panels) hours for one type of MODIS

winds (report type 259) and for one of the identified re-

gional dropout cases (case 17; see Table 2). We are in-

terested in the consistency of the large red circles between

the two lead times in terms of their positions because, in

PQC, we are concerned only with the dyob0 innovations

with large detrimental impacts. By comparing the left

panels with the right panels, we can observe that the ob-

servations with large detrimental 24-h EFSO impacts are

mostly collocated with those with large detrimental 6-h

EFSO impacts, both horizontally and vertically. This vi-

sual impression is supported by the scatterplot (not

shown) of 6- and 24-hEFSO impacts: the correlation is not

very strong near the origin, with some of the innovations

with small positive 6-h EFSO having negative 24-h EFSO,

but there is a clear positive correlation for the innovations

with large EFSO values that we are interested in. Similar

results are observed for the other dropout cases.

One could argue that the negatively impacting obser-

vations found in Fig. 3 could be simply a result of the

failure of the operational QC to reject observations that

are inconsistent with other observations or the analysis.

As discussed in section 2a, 0-h EFSO can be used to rule

out this possibility. By comparing Figs. 3a,b and 3d,e with

their 0-h equivalents (Figs. 3c,f), we find that 0-h EFSO

are mostly negative, that is, beneficial (blue), which sup-

ports the soundness of the operationalQC;we can also see

from these figures that the large negative EFSO impacts

(red circles) found with either 6- or 24-h lead time cannot

be detected with 0-h EFSO, which highlights the impor-

tance of information from later observations, used in 6- or

24-h EFSO, in detecting the detrimental dyob0 innovations.

From the scatterplot showing the results between the

dyob0 innovations and the EFSO impacts (not shown), the

large negative impacts identified in Figs. 3a,b,d,e are

found to be associated with both large innovations dyob0
and large sensitivities ›(De2)/›y. One may expect that

these large impacts should tend to occur when the

background field is uncertain and thus show large

spread; in fact, we found that observations associated

with large background spreads tend to be more detri-

mental than those with smaller spreads.

c. Dependence on verifying truth

As discussed in section 3c, when applying EFSO to a

hybrid DA system, the verifying analysis can be taken

either from the variational part (GSI analysis) or from the

EnKF part (LETKF mean analysis). In general, the var-

iational analysis at higher resolution is considered more

accurate; in our particular system, however, LETKF

mean analysis has the advantage of being produced at

the same resolution as the other variables that appear in

(6); being an ensemble average should also be an ad-

vantage since small-scale features that are unresolvable

with the observing network tend to cancel out. Since it is

not clear a priori which of the two analyses is more ap-

propriate, we examined the EFSO’s dependence on the

choice of verifying truth. The time-averaged EFSO im-

pacts from different types of observation verified against

the LETKF mean analysis (not shown) were almost

identical to those verified against the GSI analysis, so that

the EFSO impacts do not sensitively depend on which

verifying truth is used.

EFSO’s insensitivity to the choice of verifying truth

holds even for individual observations. Scatterplots of

the two EFSO values (one verified against GSI analysis

and the other against LETKF mean analysis) for dif-

ferent observation types (not shown) clearly show high

correlation. With these results, we conclude that the

EFSO diagnostics are indeed quite insensitive to the

choice of verifying analysis.

The findings in this section lead us to answer affir-

matively to questions 1 and 2 posed in the introduction.

The fact that both 6- and 24-h EFSOs can consistently

identify observations with large negative impacts en-

sures that 6-h EFSO can be used for PQC. Because the

EFSO diagnostics is found not to be too sensitive to the
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choice of verifying truth, in the next section we only

show the results verified against the GSI analysis.

5. Detrimental data-denial experiments

In this section we perform a series of detrimental data-

denial experiments with different data-denial strategies to

answer questions 3 and 4 in the introduction. Here,

‘‘detrimental data-denial experiments’’ denote experiments

in which the analyses are repeated without using the detri-

mental dyob0 innovations identified by EFSO and the fore-

casts repeated from the (hopefully improved) new analyses.

a. Selection of cases

Our regional dropout detection criteria (section 2c)

resulted in about 200 potential dropout cases. Since our

FIG. 2. Percentage of beneficial observations (i.e., the number of observations with positive impacts onto a forecast divided by the

number of all observations of the same type and then multiplied by 100) classified by the observation types. EFSO impacts are computed

using the moist total energy norm with the control GSI analysis as the verifying truth. Shown are the results evaluated with lead times of

(a) 0, (b) 6, (c) 12, and (d) 24 h. Statistics are taken for a 1-month period, with a total observation count of 218 025 941.
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computational resources did not allow us to perform

detrimental data-denial experiments on all of them,

we picked up top-20 cases that showed the largest

EFSO-estimated forecast improvement defined as the

EFSO-estimated reduction of regional 6-h forecast error

normalized by the observed regional 6-h forecast error.

The errors are measured using the moist total energy

norm. If the target region is formed by merging more

than one 308 3 308 cells in the procedure described in

section 2c, then the largest value among the unmerged

308 3 308 cells is used for the selection.

The selected 20 cases are summarized in Table 2. The

observation types that showed negative net 6-h impacts

are shown in the fifth column along with the corre-

sponding ‘‘report type’’ numbers. The EFSO-estimated

forecast improvements for each case are shown in the

sixth column.

Among the 20 cases listed in Table 2, case 17 deserves

special attention because it is exactly the case for which

ODKM13 found ;30% regional improvement by re-

jecting detrimental dyob0 innovations from MODIS wind

observations identified by 24-h EFSO. We document in

detail the results for this case in section 5d.

b. Detrimental innovation selection criteria

The detrimental innovation selection criteria, which

determine which observation to deny given 6-h EFSO

for each observation computed with (9) and (10), are a

very important component of the PQC algorithm. We

begin the exploration of these criteria by critically re-

viewing the one adopted by ODKM13. Their intricate

algorithm implicitly assumes that observations with

large negative impact should be clustered in horizon-

tally and vertically localized regions. It is not clear,

however, whether such an assumption is justifiable. In

fact, as we can see from Fig. 3, the observations with

positive and negative impacts are not well separated:

for any observation with a large negative impact, we

can easily find observations with positive impacts in its

vicinity, both vertically and horizontally. Visual in-

spections for other cases and other observation types

(not shown) all support our claim above. We thus

conclude that it is more appropriate to choose the ob-

servations solely based on their EFSO values rather

than to group them based on their geographical and

vertical locations.

We now consider how many of the observations to

reject given the EFSO values of each observation. To

address this issue, we examine the statistical distribution

of EFSO values, for each case and for each of the iden-

tified detrimental observation types. For each type, we

sort the observations in ascending order of their EFSO

values and plot the EFSO values against their ranks (the

definition of the rank here is such that, if the rank of an

observation is r, then there are r2 1 observations whose

EFSO values are smaller than that of the rank r obser-

vation). In choosing the observations to deny, we aim to

reduce the forecast errors asmuch as possible by rejecting

as few observations as possible. Thus, if we can find a

‘‘jump,’’ that is, a steep slope or a discontinuity at which

the EFSO value suddenly becomes large, it seems rea-

sonable to put the threshold there.

Three typical examples of such plots are shown in

Fig. 4. In Fig. 4a, we can locate a clear jump near the

right edge of the plot. For this kind of distribution, it is

easy to choose a threshold. Unfortunately, however, in

most of the cases we examined, such clear jumps could

not be found. In Figs. 4b,c, the EFSO values are dis-

tributed more continuously. For these distributions, it

is difficult to objectively determine the best threshold

above which the observations can be regarded as

‘‘outliers.’’

Since it is difficult to objectively determine the

threshold, we decided to try three simple criteria for

determining thresholds and we performed data-denial

experiments for each of them. For comparison’s sake,

we also tried posing no threshold at all; namely, rejecting

all observations of the types that are judged by EFSO to

be collectively detrimental. We call this criterion allobs.

The following list summarizes the three criteria along

with the allobs criterion:2

d allobs—remove all observations of the detected type

within the target region, regardless of the EFSO

values of each observation;
d allneg—remove all negatively impacting observations

of the detected type within the target region;
d one sigma—remove observations of the detected type

within the target region whose EFSO values were

above the mean of the same type by at least one

standard deviation (s); and
d netzero—for each of the detected observation types,

sort the observations within the target region based on

the EFSO impacts and remove observations from the

one with the largest negative impacts (positive values)

until the net impact of that type becomes zero

Of the above four criteria, netzero is the most selec-

tive and allobs the least selective. The allobs criterion

2 To all of the four criteria, we add the following condition: ob-

servations located away from the target domain bymore than 158 in
either latitudinal or longitudinal direction are not rejected. This

condition, however, was later found to be unnecessary (redundant)

because the localization in (10) automatically makes the impacts of

observations away from the target region negligibly small.
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serves as a baseline. The numbers of observations that

are denied by each criterion are summarized in Table 3.

The allneg criterion denies about half of the observa-

tions of detrimental types within the target region,

consistent with the fact that about a half of all the ob-

servations have negative impacts, but they are still a tiny

portion of the total number of the assimilated observa-

tions (on the order of 0.1% ; 1%).

c. Verification

With PQC, we aim to locally improve the analysis

accuracy to provide an improved first guess to the

analysis during the next cycle. It is however very difficult

to discern whether an analysis is improved or not. Here,

we use the score of a forecast initialized with the analysis

in question as a proxy to measure the quality of the

analysis, and compare the two forecasts initialized with

the analyses, one before and the other after, the denial

of detrimental dyob0 innovations.

We note that this verification approach does not

provide compelling proof of analysis improvement

since, as has been shown by previous studies, when an

analysis is changed to reduce short-term forecast errors,

improvement in the forecast at the targeted and longer

lead times does not necessarily imply improvement in

the analysis in the sense of bringing it closer to the

truth. Isaksen et al. (2005) performed a careful exam-

ination of whether a perturbation to an analysis based

on the adjoint sensitivity technique that enhances a

forecast’s fit to the observations (or ‘‘key analysis er-

rors’’) can be interpreted as real analysis errors and

concluded that such perturbations ‘‘cannot justifiably

be interpreted as analysis error as far as their detailed

structure is concerned,’’ on the ground that 1) the

structure of the perturbations depends strongly on the

subjective choice of the error norm and 2) the forecast

improvements after 12 h and onward are preceded by

small but statistically significant forecast degradations

at shorter lead times. Kleist andMorgan (2005) pointed

out another mechanism where 3) an analysis pertur-

bation that improves a forecast does so by compen-

sating for model errors rather than by reducing the true

analysis error. Furthermore, 4) when working with

forecast dropouts, it is difficult to rule out the possi-

bility of ‘‘regression to the mean,’’ a statistical phe-

nomenon that, in our context, can be stated as ‘‘for a

forecast dropout (i.e., a case with a poor extreme of

forecast skill), any perturbation to the analysis, re-

gardless of its being closer to or farther from the truth,

will likely improve the forecast by bringing the forecast

skill closer to the population (climatological) mean.’’

While the second issue above seems not to apply to our

case, the other three issues may all apply. Hence, the

purpose of this verification is modest and the results

suggest but do not conclusively prove analysis

improvement.

As we are interested in local analysis improvement, we

use themetric ‘‘local relative forecast improvement’’ with a

relatively short lead time, which is defined as follows.

First, we divide the globe into 108 3 108 patches and
compute the t-h forecast error measured with the moist

FIG. 4. The 6-h EFSO values (1023 J kg21) of individual obser-

vations plotted against their ranks. Shown are (a) the observations

of report type 133 (aircraft) for case 6, (b) the observations of re-

port type 259 (MODIS wind) for case 8, and (c) AMSU-A obser-

vations from theMetOp-A satellite for case 7. Positive and negative

impacts (or negative and positive values, respectively) are plotted

with blue and red colors, respectively. The three vertical upward-

pointing arrows represent, from left to right, the thresholds for

rejection of the allneg, one-sigma, and netzero criteria.
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norm restricted to that region verified against a GSI

analysis that was obtained before applying PQC.3 The

error is computed for each of two forecasts: one initial-

ized by the original analysis and the other by the new

analysis obtained by rejecting the identified detrimental

dyob0 innovations, denoted by e f ,beforeQC

tj0 and e f ,afterQC

tj0 ,

respectively. The relative forecast improvement for

each 108 3 108 patch is then defined as

relative forecast improvementd
e f ,beforeQC

tj0 2 e f ,afterQC

tj0
e f ,beforeQC

tj0
3 100(%). (15)

To see PQC’s impact at larger scales, we also computed

an ‘‘average improvement,’’ which is also defined by

(15), but for the NH (408–908N, 08–3608) or SH (408–
908S, 08–3608) extratropics depending on where the

target region is.

d. Case study 1: A typical successful case (case 17)

We now proceed to show the results of data-denial

experiments. First, we show the results for case 17, for

which ODKM13 obtained particularly successful

results. The 6-h EFSO impacts estimated for each ob-

servation type for case 17 are shown in Fig. 5a. Consis-

tent with ODKM13, MODIS winds were clearly

identified as detrimental. In addition, radiosonde and

marine-surface observations were also found to have a

slightly negative net impact.

The relative forecast improvements for case 17 by

the data denial based on 6-h EFSO are summarized in

Fig. 6. The allobs column shows that if we deny all

observations of the types judged detrimental by 6-h

EFSO, the forecast is improved (blue shades) in some

regions but is also degraded (red shades) in other re-

gions, although the degraded regions become smaller

as the lead time increases. Thus, rejecting all obser-

vations of detrimental type regardless of the EFSO

values of the individual observations is not a good

strategy. If we remove only the observations that had

negative impacts (allneg), we can effectively elimi-

nate most degradation, and the forecast improvement

TABLE 3. The number of rejected observations for each case and each criterion. The percentage with respect to the total number of

assimilated observations is shown in parentheses as well.

Case No.

Detection with 6-h EFSO

allobs allneg one-sigma netzero

1 1488 (0.07%) 968 (0.05%) 182 (0.01%) 326 (0.02%)

2 2292 (0.13%) 1174 (0.06%) 242 (0.01%) 110 (0.006%)

3 2842 (0.17%) 1714 (0.10%) 224 (0.01%) 344 (0.02%)

4 3827 (0.21%) 2126 (0.12%) 352 (0.02%) 270 (0.02%)

5 3328 (0.19%) 1714 (0.10%) 246 (0.01%) 118 (0.007%)

6 9360 (0.55%) 4430 (0.26%) 230 (0.01%) 22 (0.001%)

7 31491 (1.80%) 15690 (0.90%) 867 (0.05%) 67 (0.004%)

8 3654 (0.20%) 1816 (0.10%) 320 (0.02%) 138 (0.008%)

9 2330 (0.13%) 1510 (0.09%) 296 (0.02%) 510 (0.03%)

10 3278 (0.18%) 1720 (0.09%) 204 (0.01%) 89 (0.005%)

11 27832 (1.50%) 13726 (0.74%) 375 (0.02%) 32 (0.002%)

12 3830 (0.22%) 2282 (0.13%) 526 (0.03%) 462 (0.03%)

13 6416 (0.36%) 3936 (0.22%) 720 (0.04%) 908 (0.05%)

14 481(0.03%) 234 (0.01%) 34 (0.002%) 26 (0.001%)

15 966 (0.05%) 508 (0.03%) 23 (0.001%) 11 (0.0006%)

16 6956 (0.39%) 3544 (0.20%) 522 (0.03%) 174 (0.01%)

17 5915 (0.34%) 3326 (0.19%) 616 (0.04%) 415 (0.02%)

18 6238 (0.36%) 3276 (0.19%) 622 (0.04%) 366 (0.02%)

19 8504 (0.51%) 4678 (0.28%) 749 (0.04%) 809 (0.05%)

20 1216 (0.09%) 598 (0.04%) 128 (0.01%) 48 (0.003%)

3 In our experimental setup, two different analyses are available

that are obtained before and after applying PQC. The PQC pro-

cedure reduces the number of assimilated observations, resulting,

in general, in smaller analysis increments. Thus, if the forecast is

verified against the analysis after PQC, the forecast from the

analysis after PQC would automatically yield smaller forecast er-

rors than that without PQC. Here, to avoid such a biased judge-

ment, we use the analysis before PQC as the verifying truth.
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locally reaches as much as 48% for a 24-h forecast. The

fact that allneg yields better improvement than allobs

while dramatically reducing degradation proves the

effectiveness of the EFSO diagnostics. By further re-

stricting the denied observations (one sigma), we

can further eliminate forecast degradation; however,

this is achieved at the expense of diminished forecast

improvement. If we restrict the denied observations

even more (netzero), the forecast improvement be-

comes even smaller.

To check whether the denial of detrimental dyob0 in-

novations improved the observational impact on a

forecast as expected, it is instructive to inspect the EFSO

impacts of the remaining observations using the dataset

obtained after PQC. Figure 5b shows that the data de-

nial with the allneg criteria did indeed improved the

observational impacts as expected, rendering MODIS

winds, which were detrimental before PQC, the most

beneficial type. Similar improvements of impact from

the denied types of observations were also seen in other

dropout cases examined.

e. Case study 2: The most unsuccessful case (case 5)

In the next section, we show that in 18 out of 20 cases,

we can in fact improve the forecast by PQC based on 6-h

EFSO. However, in two cases, 5 and 9, the denial of

observations based on 6- or 24-h EFSO failed to improve

the forecast, so we examine in Fig. 7 the results for case 5

(case 9, not shown, exhibited similar features). Looking

at the first row (FT 5 06), we observe that, with the

allneg, one-sigma, and netzero criteria, the 6-h forecast

is actually improved within the target area. Thus, the 6-h

EFSO is actually accurate in the sense that the EFSO

impact and the actual nonlinear impact are consistent.

However, beyond 6h, the forecast improvement almost

disappears. We speculate that, in these unsuccessful

cases, the detrimental impacts from the denied obser-

vations project strongly on decaying modes, so that the

effect of not using them eventually diminishes (see the

discussion in the appendix). Why we have a few un-

successful cases needs to be explored in our future work.

f. Summary of the 24-h forecast results

In Table 4 we show, for each case and data-denial

strategy, the largest local relative improvement (‘‘max’’)

and degradation (‘‘min’’) of a 24-h forecast and the av-

erage hemispheric-scale 24-h forecast improvement

evaluated for the extratropics of the hemisphere in

which the target region is located (‘‘avg’’). For the all-

neg, one-sigma and netzero criteria based on 6-h EFSO,

the average improvement (avg) is positive in almost all

cases. The only exceptions are for allneg in cases 5 and 9,

where we had degradations, respectively, of 0.2% and

0.4%. Because PQC is designed to minimize the occur-

rences of local forecast failures, its impact is spatially

localized and thus the impact becomes small if averaged

over a large spatial domain. This is why the hemispheric-

scale average improvement is at most ;2%. We point

FIG. 5. The regional 6-h forecast error reduction or increase attributed by EFSO to each observation types for case 17, evaluated for the

experiments (a) before applying PQC and (b) after applying PQCwith the allneg criteria. The forecast errors are measured with the moist

total energy norm (J kg21) within the target area of 608–908N, 408–1008E.
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out nevertheless that, although the improvement on the

order of ;0.2% to ;2% might seem to be modest, it is

normally very difficult to obtain.

The features that we saw for case 17 are also valid

for most other cases, namely 1) allobs exhibits both

improvement and degradation, 2) allneg alleviates

the degradation seen in allobs and tends to show

larger improvement, and 3) one-sigma and netzero

further reduce the degradation but with reduced

improvement.

Encouragingly, the large forecast improvements that

we saw for case 17 are not limited only to this particular

case. For example, if we look at the allneg criterion, the

cases 8, 12, 13, 16, 17, 18, and 19 all exhibit local maxi-

mum forecast improvement that exceed 30%. For these

cases, the one-sigma and netzero criteria also result in

FIG. 6. Relative forecast improvements for each of the four data rejection criteria based on 6-h EFSO for case 17. Each column

represents, from left to right, the allobs, allneg, one-sigma, and netzero criteria. The first row represents the relative improvement of 6-h

forecasts; the second and third rows represent, respectively, the improvement of 12- and 24-h forecasts. Red (blue) colors represent

forecast degradation (improvement). The thick black triangular sector represents the target region. The color bars run from 250 on the

left to 210 and on the right from 15 to 145 in increments of 10.
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large maximum local forecast improvements (;20%).

For all of these particularly successful cases, EFSO

identified MODIS wind as the detrimental observation

type. This suggests that either the observations from

MODIS winds had anomalous errors or the way the DA

system handled them was faulty.

g. Impacts on 5-day forecasts

In the previous sections, we showed that the strategic

denial of observations under the guidance of 6-h EFSO

improves the 24-h forecast, which suggests that PQC

improved the analyses. To further investigate the benefit

of using PQC, we now explore the temporal extension of

the forecast impact of PQC.

We explored the ability of PQC to reduce the relative

integrated forecast error within three latitudinal bands:

the NH extratropics, the SH extratropics, and the tropics

(308S–308N, within which we made no detrimental in-

novation denial). These statistics were computed for all

20 cases using the allneg criterion (section 5b). The

PQC-modified forecasts from 6 to 126 h were verified

against the GSI analysis that was obtained before

FIG. 7. As in Fig. 6, but for the most unsuccessful case (case 5).

AUGUST 2017 HOTTA ET AL . 3347

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:29 PM UTC



applying PQC. The forecast errors were measured with

the moist total energy norm. In exploring the impact of

PQC on 5-day forecasts, when cases of detrimental dyob0
innovations took place at the same time (such as cases 17

and 18), they were combined at the observation denial

step (the fifth step in the PQC algorithm), as they would

be in operations. In practice, it is necessary to avoid

performing PQC on insignificant cases in order to min-

imize computational costs and prevent the introduction

of noise that can potentially degrade forecasts. Hence, a

20% threshold of 6-h EFSO estimated improvement in

the target area (the sixth column in Table 2) was set to

distinguish the 11 ‘‘significant’’ cases from the other 9

‘‘insignificant’’ cases.

We show the average 5-day forecast error improve-

ment of both the 11 significant cases (Fig. 8a) and the

other 9 insignificant cases (Fig. 8b). Since all the regional

dropouts and the associated denied observations were in

higher latitudes, the improvement takes place mostly in

the NH and SH extratropics. The forecast error in the

tropical belt, on the other hand, is apparently worse after

PQC in the first 6 h, but this degradation is due to the

analysis change introduced by PQC rather than to a true

degradation, as shown by the fact that it vanishes within

12 h. In contrast, at higher latitudes, where the detri-

mental dyob0 innovations were actually denied, the initial

improvement persists and grows with time. The growth

of improvement can also be seen in the global mean. It

reaches about 1% after 5 days, demonstrating the long-

term effect of PQC. It is noteworthy that the

improvements in higher latitudes tend to expand in

space and ‘‘leak’’ to lower latitudes (not shown), leading

to a steady growth of improvement in the tropics for the

11 significant cases.

The average of the nine insignificant cases in Fig. 8b

shows a different scenario. Although the forecasts in the

extratropics were still improved until day 4, this im-

provement was smaller and reached only 0.5%. In ad-

dition, the PQC-modified forecasts started degrading

after 4 days in most regions.

h. Comparison with data selection based on 24-h
EFSO

In the preceding sections, we have confirmed strong

evidence of the capacity of PQC based on 6-h EFSO to

improve our analysis in regional dropout cases. One

could argue, however, that data selection based on 24-h

EFSO might result in even better improvement. To see

if this is true, we have repeated all the data-denial ex-

periments using 24- instead of 6-h EFSO in the detri-

mental innovation selection criteria. The observation

types that showed negative net 24-h impacts and the

EFSO-estimated forecast improvements evaluated with

24-h lead time are shown, respectively, in the seventh

and eighth columns of Table 2. We found good agree-

ment between the types of observations identified as

detrimental by 6- and 24-h EFSOs. The forecast im-

provements achieved by PQC based on 6- and 24-h

EFSOs were also very close. Detailed inspection of the

patterns of forecast improvements similar to the plots in

TABLE 4. Relative improvement or degradation of 24-h forecasts (%) by the denial of observations based on 6-h EFSO.

Case No.

allobs allneg one-sigma netzero

Max Min Avg Max Min Avg Max Min Avg Max Min Avg

1 12 29 0.0 11 21 0.2 4 21 0.1 5 21 0.1

2 14 25 20.1 11 24 0.3 8 22 0.2 4 0 0.2

3 13 215 0.0 7 25 0.2 2 21 0.0 4 22 0.0

4 25 25 0.6 27 25 0.7 15 22 0.3 13 22 0.2

5 15 232 20.2 19 281 20.2 23 230 0.2 22 213 0.3

6 9 29 0.0 15 26 0.4 12 23 0.3 3 21 0.1

7 17 29 20.0 13 25 0.4 2 23 0.0 0 0 0.0

8 41 218 0.9 41 214 1.1 21 25 0.8 10 22 0.4

9 7 221 20.6 8 216 20.4 8 23 0.0 8 24 0.1

10 25 26 1.1 19 26 0.7 3 22 0.2 6 0 0.2

11 11 26 0.5 9 25 0.3 2 22 0.1 3 0 0.1

12 37 214 0.7 39 212 0.7 19 22 0.5 19 22 0.5

13 24 29 1.4 30 29 0.8 18 210 0.3 19 212 0.4

14 5 0 0.3 3 0 0.1 1 0 0.0 1 0 0.1

15 3 22 0.1 1 21 0.1 1 21 20.0 1 21 0.0

16 27 215 1.9 30 221 1.8 23 24 1.3 16 22 0.7

17 39 215 0.8 48 24 2.1 26 22 1.2 20 22 0.8

18 46 29 2.4 46 28 2.2 25 23 1.0 21 22 0.8

19 44 224 2.2 37 210 2.2 17 21 1.0 14 21 1.0

20 12 23 0.2 10 21 0.3 5 21 0.2 3 21 0.0
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Fig. 6 (not shown) confirms that the areas of forecast

improvement or degradation are similar, regardless of

the choice of lead time in EFSO estimation. This cor-

roborates our finding that EFSO is insensitive to the

choice of lead time (section 4b).

The results of data-denial experiments with PQC

based on 24-h EFSO confirm that PQCwith 6-h EFSO is

similarly able to improve the forecast and thus the

analysis as PQCwith 24-h EFSO, but the use of a shorter

lead time is much more advantageous for operational

implementation.

6. Discussion and conclusions

Recent studies have shown that many ‘‘forecast skill

dropouts’’ are due to deficiencies in the initial conditions,

not in the model, suggesting that one possible way to

mitigate the dropout problem is to improve the opera-

tional QC system. In this paper we proposed a new, fully

flow-dependent QC technique based on EFSO, which we

call proactive QC (PQC), and investigated its effective-

ness and feasibility within a quasi-operational context.

A critical assumption behind the concept of PQC

is that 6-h EFSO is capable of detecting detrimental

dyob0 innovations. Using a lower-resolution version of

NCEP’s operational global NWP system, we have con-

firmed that EFSO results are indeed rather insensitive to

the choice of forecast lead time and verifying truth. We

then investigated the effectiveness of PQC based on 6-h

EFSO by performing data-denial experiments with 20

notable regional dropout cases. We found that, by re-

jecting all the negatively impacting observations (in

terms of 6-h EFSO) of the types identified as collectively

detrimental (the allneg criterion), the 24-h forecasts

were improved in 18 out of 20 cases, with local forecast

improvements reaching over 30% in as many as seven

cases. Even more encouragingly, the positive impact of

PQC on forecasts was found to persist beyond 5 days. As

discussed in section 5c, the verification approach adop-

ted here has several limitations and the results do not

conclusively prove analysis improvement, but are nev-

ertheless suggestive of our assertion that the analyses

can be improved by PQC.

We examined the forecast improvement by PQC to

show that the analysis was likely improved so that the

6-h forecast from this analysis, or the first guess at the

next analysis cycle, also likely improved. The forecast

improvement presented in section 5 does not guarantee

forecast improvements within a real-time operational

context, because PQC requires the analysis at the later

cycle that, on average, produces better forecasts than the

one initialized with the PQC-improved previous analysis

[i.e., (t 2 6)-h forecast x f

tj6 is more accurate than t-h

forecast x f ,afterQC

tj0 ]; it is by providing a better first guess to

this next analysis and doing it anew that PQC may im-

prove real-time operational forecasts, as discussed later

in this section.

An application for which PQC can be used most

straightforwardly is reanalysis because, for this non-real-

time application, having to wait 6 h is not an issue. We

assert, however, that PQC can still be used in real-time

operational systems provided that several technical is-

sues are addressed, as discussed below.

The first and perhaps most critical concern is the cost.

It would seem that having to wait until the completion of

FIG. 8. Relative forecast improvements measured with the moist

total energy norm averaged over (a) the 11 significant cases for

which the EFSO-estimated 6-h forecast improvement for the target

domain exceeded 20% and (b) the 9 nonsignificant cases. The

relative forecast improvements are computed for each of the NH

extratropics (308–908N), the SH extratropics (908–308S), the tropics
(308S–308N), and the whole globe: NH (blue), SH (brown), TR

(yellow), and Global (purple).
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the next analysis would be a serious bottleneck in real-

time operations; furthermore, having to perform again

the analysis might seem prohibitive. In fact, however,

PQC can be performed virtually with no additional cost

to the operational system; we now present two ideas that

allow for the economical execution of PQC:

One idea (J. Derber, NCEP, 2013, personal commu-

nication) is to exploit the time lag between the ‘‘early’’

and ‘‘final’’ analyses: most operational NWP centers,

including NCEP, ECMWF, and JMA, maintain two

different kinds of DA jobs. The early analysis (called

GFS analysis at NCEP) adopts a shorter cutoff time to

provide initial conditions for the forecasts in a timely

manner, allowing fewer observations to be assimilated.

Thus, the early analysis is not carried over to the next

cycle. On the other hand, the final analysis (called

GDAS analysis at NCEP) adopts a longer cutoff time to

allow for the late arrival of observations, and the re-

sulting analysis is taken over to the subsequent cycles. A

typical configuration of an operational DA system is il-

lustrated schematically in Fig. 9a, taking NCEP’s

GDAS/GFS as an example. This type of configuration,

common to many operational NWP systems, allows

PQC to be executed without any delay to the schedule

FIG. 9. Schematic illustrations of the early analysis (GFS) and final analysis (GDAS) configurations for 0000–0600 UTC initializations:

(a) the current operational configuration and (b) the configuration with proactive QC.
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(Fig. 9b): suppose, for example, we wish to apply PQC to

the final analysis for 0000 UTC (GDAS00) to provide a

better background to the final analysis at 0600 UTC

(GDAS06). Thanks to the early analysis for 0600 UTC

(GFS06), which finishes at 0918 UTC in real time, the

verification state xy06 required to run PQC for the

0000 UTC observations becomes available 2.5 h before

GDAS06 starts at 1150 UTC in real time. This time slot

of 2.5 h can accommodate well the execution of PQC,

providing an improved background x f

06j00 to GDAS06

in a timely manner. The improved background x f

06j00 will
result in improvement of the GDAS06 analysis and the

subsequent extended forecast at GFS12. For this PQC

application, all that is required is that the background

x f

06j00 be improved.

One may still argue that the time available for PQC

may not be long enough for running the analysis and

forecast again. Our second idea addresses this concern.

Once we have the list of observations that should be

rejected, we can approximately obtain the improved

analysis with (12) and (13) in section 2a, which require

only a minimal computational cost. This technique

enables a cost-efficient estimation of how the analysis

and forecast would change by not assimilating the det-

rimental dyob0 innovations without actually repeating the

analysis and forecast. This approximation in (12) and

(13) should be valid if the number of rejected observa-

tions is much smaller than that of all the assimilated

observations, a condition that was satisfied in all 20 of

the cases examined in this paper (cf. Table 3) and should

be satisfied in virtually any PQC applications, if the

impact of the use of inflation in the EnKF is accounted

for. In fact, ODKM13 used the same approximation and

obtained very good consistency between the actual

nonlinear forecast change and its linear ‘‘constant K’’

approximation (see their Fig. 9).

The second concern is whether the forecast is also

improved in an ‘‘on line’’ cycled environment; the data-

denial experiments we conducted are ‘‘off line’’ in the

sense that the improvement of the forecast achieved by

PQC was not taken over to the next cycle. However, if

PQC is implemented in real-time operations, the im-

proved forecast will be used as the background at the

next cycle. This cycling should not degrade the forecast

or reduce the forecast improvement; on the contrary, the

improvement should accumulate over the cycles. How-

ever, this accumulation of improvements has to be es-

tablished before bringing PQC into operations.

In the previous section, we argued that the fact that the

rejection of some of the MODIS wind observations

resulted in particularly large forecast improvements

suggests that MODIS wind observations or the corre-

sponding background might have had some technical

issues, either in the dataset itself or in theway the data are

processed by the NWP system. This aspect deserves a

careful examination. While it is logically incorrect to

suspect quality issues in either observations or back-

ground by the mere evidence of large negative EFSO

impacts (section 1, paragraph 5), it should be legitimate to

assume that flaws in the observations, the background, or

the DA system, if present, will likely manifest themselves

as detrimental EFSO impacts, although they will be

subject to stochastic fluctuations. Detrimental EFSO

impacts would therefore provide useful guidance on

which cases to examine to identify potential flaws in the

NWP system or observations. This motivates us to ex-

plore another major application of EFSO, in addition

to improving the analyses and forecasts by PQC. Real-

time operation of PQC would enable building a detailed

database of EFSO impacts along with relevant metadata

as its by-product. Such database of EFSO and metadata

can then be provided to instrument/algorithm devel-

opers, NWP data specialists, and modelers to help them

to identify the problem that produced the negative im-

pacts and avoid them in the future. For this application,

close collaboration with instrument/algorithm developers,

modelers, and data assimilation specialists is indispens-

able in determining what type of information and met-

adata would bemost helpful to them. Such collaboration is

taking place with theMODISwind algorithmdevelopers at

Cooperative Institute for Meteorological Satellite Studies

(CIMSS) at the University of Wisconsin–Madison, and is

providing useful information about the biases in MODIS

wind O-B innovations.

Finally, we point out that (E)FSO would also allow a

more efficient and precise determination of the optimal

way to assimilate new observing systems. The current

standard observing system experiment (OSE) approach

has difficulties in obtaining statistical significance in

the presence of the already assimilated observations

(Geer 2016). An (E)FSO approach should address this

problem by finding the short-term impact of each ob-

servation and allowing comparison of the impact of

different preprocessing algorithms in a more statistically

consistent manner.4 Lien (2014) already showed that

EFSO can be effectively used to systematically design a

data-selection strategy, using the TRMM-retrieved

global precipitation as an example of a new observing

4 Lorenc andMarriott (2014) found, when applying FSO to a toy

model, that 183 independent cases were needed to discern the

impact from a single observation with 95% statistical significance;

in contrast, Geer (2016) reports that, with an OSE approach, as

much as 424 independent forecasts are necessary to discern the

collective impact of all observations from an AMSU-A instrument

at the 95% significance level.
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system, and avoiding having to perform a large number

of expensive OSEs in order to arrive to an appropriate

data-selection/QC strategy.
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APPENDIX

An Interpretation of Fig. 2

In the literature onFSO studies, there have been several

discussions about what percentage of the observations

has a beneficial impact on the forecasts, in particular why

so few do, because past FSO studies report that only

slightly more than 50% of observations have positive

FSO impacts. Recently, Lorenc and Marriott (2014)

presented a review of the different views offered on this

issue by previous studies and showed, through a series of

idealized experiments discussing not only the sub-

optimality of the DA system (Gelaro et al. 2010) and the

limited accuracy of verifying truth (Daescu 2009) but also

the differences in the growth rates of each mode of the

forecast model, along with the lack of flow dependence in

the prescribed B matrix, all of which contribute to the

lowered fraction of beneficial observations. In view of

these discussions, it is interesting to see how the percent-

age of beneficial observations changes with the evaluation

lead time in our system. As we discussed in section 4b, we

found that only slightly more than 50% of the observa-

tions contribute positively to the forecast at 24-h lead time,

but this ratio becomes larger as the lead time gets shorter.

Following the arguments of Pires et al. (1996), Trevisan

and Uboldi (2004), Uboldi and Trevisan (2006), Carrassi

et al. (2007), Trevisan et al. (2010), and Lorenc and

Marriott (2014), we can interpret this as follows.

The atmosphere as a dynamical system has both grow-

ing and decaying modes. Assume that an observation

improves the analysis by significantly improving the

decaying modes, but, at the same time, it slightly degrades

the growing modes. For a very short forecast, this obser-

vation would show a beneficial impact. With time, how-

ever, the small initial amplitude in the growing modes will

amplify and overwhelm the reduction of the error in the

decaying modes, rendering the net impact of that obser-

vation negative.

The assimilation in unstable subspace (AUS) approach

(Trevisan and Uboldi 2004; Uboldi and Trevisan 2006;

Trevisan et al. 2010) restricts analysis increments in the

unstable subspace of the model dynamics. Cycled over a

long enough period, and under a perfect-model assump-

tion, this method makes the true background errors

project entirely on growing (and neutral) modes. In

such a system, more observations will exhibit beneficial

forecast impacts than in a conventional DA system

(Lorenc andMarriott 2014), allowing for amore effective

use of the observations. It remains to be investigated,

however, whether this advantage of the AUS approach,

at present only verified for an idealized toy systemwith an

identical-twin setup, holds also for realistic NWP systems

where biases constitute a substantial fraction of the

background and observation errors.
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